Dyck paths and restricted permutations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck paths and restricted permutations

This paper is devoted to characterize permutations with forbidden patterns by using canonical reduced decompositions, which leads to bijections between Dyck paths and Sn(321) and Sn(231), respectively. We also discuss permutations in Sn avoiding two patterns, one of length 3 and the other of length k. These permutations produce a kind of discrete continuity between the Motzkin and the Catalan n...

متن کامل

Permutations with Restricted Patterns and Dyck Paths

We exhibit a bijection between 132-avoiding permutations and Dyck paths. Using this bijection, it is shown that all the recently discovered results on generating functions for 132-avoiding permutations with a given number of occurrences of the pattern 12 . . . k follow directly from old results on the enumeration of Motzkin paths, among which is a continued fraction result due to Flajolet. As a...

متن کامل

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...

متن کامل

Counting Segmented Permutations Using Bicoloured Dyck Paths

A bicoloured Dyck path is a Dyck path in which each up-step is assigned one of two colours, say, red and green. We say that a permutation π is σ-segmented if every occurrence o of σ in π is a segment-occurrence (i.e., o is a contiguous subword in π). We show combinatorially the following results: The 132-segmented permutations of length n with k occurrences of 132 are in one-to-one corresponden...

متن کامل

Euler Coefficients and Restricted Dyck Paths

One of the most recent papers on patterns occurring k times in Dyck paths was written by A. Sapounakis, I. Tasoulas, P. Tsikouras, Counting strings in Dyck paths, 2007, to appear in Discrete Mathematics [5]. The authors find generating functions for all 16 patterns generated by combinations of four up (ր) and down (ց) steps. A Dyck path starts at (0, 0), takes only up and down steps, and ends a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2006

ISSN: 0166-218X

DOI: 10.1016/j.dam.2006.02.004